强的离谱!机器学习大杀器:联邦学习火了!

发布者:梁刚健发布时间:2023-01-09浏览次数:112

原文链接:https://mp.weixin.qq.com/s/WNJYCgu_OZ-550nV_Xr1Zg

专知 


2016年是人工智能(Artificia IntelligenceAI)成熟的一年。随着AlphaGo击败人类顶级围棋手,我们真正见证了人工智能的巨大潜力,并开始期待更复杂、更尖端的人工智能技术可以应用在更多的领域,包括无人驾驶、生物医疗、金融等。


如今,人工智能技术在各行各业都显示出了优势。人们自然希望像AlphaGo这样的由大数据驱动的人工智能技术能够很快在生活中应用起来。然而,现实有些令人失望:除了少数行业,大多数领域只拥有有限的数据或质量较差的数据,这使AI技术的落地比我们想象的更困难。是否通过跨组织传输数据,将数据融合在一个公共站点中呢?


事实上,在许多情况下,打破数据源(数据拥有者)之间的障碍是非常困难的,甚至是不可能的。一般来说,任何AI项目所需的数据都包含多种类型。例如,在人工智能技术驱动的产品推荐服务中,产品销售者拥有产品信息、用户购买数据,但没有描述用户购买能力和支付习惯的数据。在大多数行业中,数据以孤岛的形式存在。


近年来,随着隐私保护及数据安全法律法规的逐渐完善,数据孤岛问题变的日益严峻。为解决联合建模的需求和数据隐私保护之间的矛盾,联邦学习(Federated Learning)作为其中一种技术上的解决方案备受学术界和工业界人士的关注。本文将全面的介绍联邦学习相关知识以及在金融行业的项目实战。 

亮点




  • 全面的技术知识讲解课程内容涵盖横向联邦学习、纵向联邦学习、联邦迁移学习三大模型架构,包含联邦学习在视觉、医疗、金融、隐私计算、政务服务等应用案例的讲解。



  • 项目实践,学以致用学员使用联邦学习框架与算法,实践金融领域隐私计算与风险检测的任务。

  • 专业团队严格打磨的课程内容,前沿且深入行业内多年一线从业经验科学家或科研学者、工程师讲授,并配有背景优秀经验丰富的助教,致力于带来最优质的学习体验。课程内容经过前期数百小时的打磨设计,保证内容和项目节点设置合理,真正做到学有所得。

  • 就业导向,目标明确顺利完课后,优秀学员可获得京东、百度等互联网大厂联邦学习工程师岗位的合作内推面试机会。

你将收获


全面掌握联邦学习领域的知识,灵活应用在自己工作中能够了解联邦学习框架的实现方式,并熟练掌握其关键技术与方法深入理解前沿的联邦学习技术,拓宽工作和研究的技术视野短期内对一个领域有全面且系统的认识,大大节省学习时间认识一群拥有同样兴趣的人、相互交流、相互学习



内容大纲

Week1主题:初识联邦学习与隐私计算讲解联邦学习定义、联邦学习分类、联邦学习的研究进展、联邦学习开源平台、联邦学习中使用的隐私保护技术、隐私计算基础知识等内容。
课程提纲:

  • 联邦学习系统架构

  • 联邦学习分类

  • 联邦学习常用开源平台

  • 联邦学习中的隐私保护技术

  • 隐私计算定义与分类

  • 同态加密

  • 差分隐私

  • 安全多方计算


Week2主题:分布式机器学习讲解分布式机器学习的定义、分布式机器学习算法、分布式机器学习到联邦学习的演进等内容。
课程提纲:

  • 分布式机器学习定义

  • 分布式机器学习平台

  • 大规模机器学习

  • 隐私保护机器学习方案

  • 分布式机器学习算法


Week3主题:横向联邦学习讲解横向联邦学习的定义、横向联邦学习架构、横向联邦学习算法、横向联邦学习的优化等内容。
课程提纲:

  • 横向联邦学习定义

  • 横向联邦学习架构

  • 联邦平均算法

  • 横向联邦学习算法


Week4主题:使用隐私计算构建金融领域风控模型讲解使用隐私计算构建金融领域风控模型的流程、分析等内容。
课程提纲:

  • 横向联邦学习构建流程

  • 横向联邦学习结果分析



Week5主题:纵向联邦学习讲解纵向联邦学习的定义、纵向联邦学习架构、纵向联邦学习算法、纵向联邦学习的优化等内容。
课程提纲:

  • 纵向联邦学习定义

  • 纵向联邦学习架构

  • 纵向联邦线性回归

  • 纵向联邦决策树


Week6主题:联邦迁移学习讲解联邦迁移学习的定义、联邦迁移学习架构、联邦迁移学习算法、联邦迁移学习的优化等内容。
课程提纲:

  • 联邦迁移学习定义

  • 联邦迁移学习框架

  • 联邦迁移学习训练与预测

  • 联邦迁移学习中的同态加密

  • 联邦迁移学习中的秘密共享


Week7主题:隐私计算、联邦学习在不同领域的应用及前沿研究讲解隐私计算和联邦学习在不同领域的应用案例、研究内容、面临问题等内容。例如计算机视觉领域的联邦学习目标检测网络;政务领域的差分隐私数据共享;智能物联网中的联邦学习用户行为预测;医疗领域的联邦学习健康分析、同态加密基因分析;金融领域的联邦学习反欺诈、隐私求教联合风控等。
课程提纲:

  • 联邦学习应用案例(计算机视觉领域的联邦学习目标检测网络,政务领域的差分隐私数据共享,智能物联网中的联邦学习用户行为预测,医疗领域的联邦学习健康分析等)

  • 联邦学习研究及面临问题

  • 隐私计算应用案例

  • 隐私计算研究及面临问题



Week8主题:使用联邦学习构建金融领域风险监测模型讲解使用联邦学习构建金融领域风险监测模型的流程、结果分析等内容。
课程提纲:

  • 金融领域风险监测模型构建流程

  • 金融领域风险监测模型结果分析


项目介绍
项目一:金融隐私计算实战
项目内容描述:讲解联邦学习和隐私计算相关的概念、联邦学习和隐私计算的发展、联邦学习的基础技术(隐私保护技术和分布式学习技术)、横向联邦学习定义、横向联邦学习架构及算法详解,最终使用隐私计算构建金融领域风控模型。
项目使用的算法:横向联邦学习
项目使用的工具:FATE/examples/data,开源数据集
项目预期结果:熟悉联邦学习和隐私计算相关知识和基本概念,熟悉横向联邦学习定义及架构,学会横向联邦学习算法并基于隐私计算实现金融领域风险监测。
项目对应第几周的课程:1~4


项目二:基于联邦学习的金融领域风险监测实战
项目内容描述:讲解纵向联邦学习定义、纵向联邦学习架构及算法详解,讲解联邦迁移学习定义、联邦迁移学习架构及算法详解,讲解联邦学习在业界的应用现状和典型案例,最终使用开源框架FATE实现一个金融领域风险监测模型的构建。
项目使用的算法:联邦学习
项目使用的工具:Python、开源框架FATE
项目预期结果:熟悉纵向联邦学习、联邦迁移学习定义及架构,学会纵向联邦学习、联邦迁移学习算法,并基于开源框架FATE实现一个金融领域风险监测模型。
项目对应第几周的课程:5-8





适合人群